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ABSTRACT

In many cases the structure of a fluid flow is well-characterized by its vortices, especially for

the purpose of visualization. In this paper we present a new algorithm for identifying vortices

in complex flows. The algorithm produces a skeleton line along the center of a vortex by using

a two-step predictor-corrector scheme. The vorticity vector field serves as the predictor and

the pressure gradient (in the perpendicular plane) serves as the corrector. We describe an eco-

nomical description of the vortex tube's cross-section: a 5-term truncated Fourier series is

generally sufficient, and it compresses the representation of the flow by a factor of 4000 or

more. We reconstruct the vortex tubes as generalized cylinders, providing a polygonal mesh

suitable for display on a graphics workstation. We show how the reconstructed geometry of

vortex tubes can be enhanced to help visualize helical motion in'a static image.
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1 Introduction

Vortices are considered the most important structures that control the dynamics of flow fields.

Large-scale vortices are responsible for hurricanes and tornadoes. Medium-scale vortices

affect the handling characteristics of an airplane. Small-scale vortices are the fundamental

building blocks of the structure of turbulent flow. One would like, therefore, to visualize a

flow by locating all of its vortices and displaying them.

This paper presents a novel predictor-corrector technique for locating vortex structures in

three-dimensional flow data. The technique is effective at locating vortices even in turbulent

flow data. As an additional benefit, the technique provides a terse, one-dimensional represen-

tation of vortex tubes which offers significant compression of the flow data. Such compression

is important if one wishes to visualize unsteady (i.e., time-varying) flows interactively.

Section 2 presents a survey of the efforts by various other researchers to define mathematical

characteristics satisfied by vortices. Section 3 presents our predictor-corrector scheme for

identifying vortices and discusses some of the programming considerations that are necessary

to make the scheme efficient. Section 4 describes how we calculate the cross-sections of the

vortex tube and how we represent them. In section 5 we show how the vortex skeletons,

together with an efficient representation of the cross-sections, offer a substantial amount of

data compression to represent features of a flow. We then describe the process of reconstruct-

ing the vortex tubes from the compressed format and show an enhanced reconstruction that

helps visualize the motion of the fluid along the vortex tube.

2 Survey of Identification Schemes

The term "vortex" connotes a similar concept in the minds of most fluid dynamicists: a helical

pattern of flow in a localized region. There are mathematicar definitions for "vorticity" and

"helicity," but vortical flow is not completely characterized by them. A precise definition is

difficult to obtain -- a fact supported by the variety of efforts outlined below.

Spiral Moving With the Core

Robinson [ 1] suggests the following working definition for a vortex.

A vortex exists when instantaneous streamlines mapped onto a plane normal to the

vortex core exhibit a roughly circular or spiral pattem, when viewed from a reference
frame moving with the center of the vortex core.



Robinson[2] andRobinson,Kline, and Spalart[3] usetheaboverigorousdefinition to con-

firm that a particularstructureis, in fact, a vortex. Unfortunately,this definition requiresa

knowledgeof thevortexcorebeforeonecandeterminewhethersomethingis avortex.

Low Pressure

Robinson and his colleagues find that elongated low-pressure regions in incompressible turbu-

lent flows almost always indicate vortex cores. Isosurfaces of low pressure are usually effec-

tive at capturing the shape of an individual vortex (Figure la). Pressure surfaces become

indistinct where vortices merge, however, and a high-quality image can easily require thou-

sands of triangles to create the surface.

Vorticity Lines

Vorticity is a vector quantity that is proportional to the angular velocity of a fluid particle. It is

defined as

CO=V×U

where u is the velocity at a given point. Vorticity lines are integral curves of vorticity (Figure

4). Moin and Kim [4] [5] use vorticity lines to visualize vortical structures in turbulent chan-

nel flow. The resulting curves are extremely sensitive to the choice of initial location x 0 for the

integration. As Moin and Kim point out [4],

If we choose x0 arbitrarily, the resulting vortex line is likely to wander over the whole

flow field like a badly tangled fishing line, and it would be very difficult to identify the

organized structures (if any) through which the line may have passed.

They illustrate the potential tangle in Figure 2 of [5]. To avoid such a confusing jumble, they

carefully select the initial points. However, Robinson [2] shows that even experienced

researchers can be surprisingly misled by ordinary vorticity lines.

Cylinder With Maximum Vorticity

Villasenor and Vincent [6] present an algorithm for locating elongated vortices in three-

dimensional time-dependent flow fields. They start from a seed point and compute the average

length of all vorticity vectors contained in a small-radius cylinder. They repeat this step for a

large number of cylinders that emanate from the seed point. The cylinder with the maximum

average becomes a segment of the vortex tube. They use only the magnitudes (not the direc-

tions) of vorticity; as a consequence the algorithm can inadvertently capture structures that are

not vortices.
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Figure 1. Different schemes used to identify, a vortex.
From upper left." (a) isosurface of constant pressure;
(b) isosurfaces of constant vorticity; (c) isosurfaces of
complex eigenvalues of the velocity-gradient matrix;
(d) isosurface of constant helici_; (e) spiral-saddles
(dark lines) compared with isopressure vortex tube
(pale surface). Each image visualizes the same flow.

Vorticity and Vortex Stretching

Zabusky et al. [7] use vorticity Icoland vortex stretching Io_. Vul/1_ol in an effort to understand

the dynamics of a vortex reconnection process. They fit ellipsoids to the regions of high vor-

ticity. Vector field lines of vorticity and of vortex stretching emanate from the ellipsoids. In

flows with solid boundaries or a mean straining field, the regions with large vorticity magni-

tudes do not necessarily correspond to vortices (Figure l b); hence, the ellipsoids do not

always provide useful information.

Velocity Gradient Tensor

Chong, Perry, and Cantwell [8] define a vortex core as a region where the velocity-gradient

tensor has complex eigenvalues. In such a region, the rotation tensor dominates over the rate-

of-strain tensor. Sofia and Cantwell [9] use this approach to study vortical structures in free-

shear flows. At points of large vorticity, the eigenvalues of the velocity-gradient matrix are

determined: a complex eigenvalue suggests the presence of a vortex.



This method correctly identifies the large vortical structures in the flow. However, the method

also captures many smaller structures without providing a way to link the smaller vortical vol-

umes with the larger coherent vortices of which they might be a part (Figure lc).

Curvature and Helicity

Yates and Chapman [10] carefully explore two definitions of vortex cores. Unfortunately, the

analyses and conclusions for both definitions are appropriate only for steady flows. By one

definition, the vortex core is the line defined by the local maxima of normalized helicity. Fig-

ure ld shows an isosurface of constant helicity. Notice that the surface fails to capture the

"head" on the upper-right side of the hairpin vortex. This shows that the local maxima fail to

follow the core.

In the other definition, a vortex core is an integral curve that has minimum curvature. If there

is a critical point on a vortex core, then that point must be a spiral-saddle. The eigenvector

belonging to the only real eigenvalue of the spiral-saddle corresponds, locally, to an integral

curve entering or leaving the critical point. By integrating this curve, the entire vortex core

may be visualized [11]. Figure le, however, shows that these curves can miss the vortex com-

pletely. (The red spot is a critical point; the integral curves are colored blue).

User-guided Search

Bernard, Thomas, and Handler [ 12] use a semi-automated procedure to identify quasi-stream-

wise vortices. Their method finds local centers of rotation in user-specified regions in planes

perpendicular to the streamwise direction of a turbulent channel flow. Experienced users can

correctly find the critical vortices responsible for the maintenance of the Reynolds stress.

Their method captures the vortices that are aligned with the streamwise direction, but in free-

shear layers and transitional boundary layers, the significant spanwise vortices go undetected.

Because it depends heavily on user intervention, the process is tedious and is dependent upon

the individual skill of the user.

3 The Predictor-corrector Method

The methods listed above all experience success in finding vortices under certain flow condi-

tions. But all of them have problems capturing vortices in unsteady shear flow, which is of

interest to us because of its importance in understanding the transition from laminar to turbu-

lent flow. We were led, therefore, to develop another technique which could tolerate the com-

plexity of such a transitional flow.



Our predictor-corrector method produces an ordered set of points that approximates a vortex skel-

eton. Associated with each point are quantities that describe the local characteristics of the vortex.

These quantities may include the vorticity, the pressure, the shape of the cross-section, or other

quantities of interest. This method produces lines that are similar to vorticity lines, but with an

important difference. Whereas vorticity is a mathematical function of the instantaneous velocity

field, a vortex is a physical structure with coherence over a region of space. In contrast to vorticity

lines (which may wander away from the vortex cores), our method is self-correcting: line trajecto-

ries that diverge from the vortex core reconverge to the center.

In this section we discuss the procedure used to find an initial seed point on the vortex skeleton.

We then explain the predictor-corrector method used for growing the vortex skeleton from the

seed point. Finally, we address how to terminate the vortex skeleton.

3.1 Finding a Seed Point

Vorticity lines begin and end only at domain boundaries, but actual vortices have no such restric-

tion. Therefore we must examine the entire flow volume in order to find seed points from which to

initiate vortex skeletons. We consider low pressure and a large magnitude of vorticity to indicate

that a vortex is present. Low pressure in a vortex core provides a pressure gradient that offsets the

centripetal acceleration of a particle rotating about the core. Large vorticity indicates that such

rotation is probably present.

In our implementation, the flow field (a three-dimensional rectilinear grid) is scanned in planes

perpendicular to the streamwise direction. The scanning direction affects the order in which vorti-

ces are located, but not the overall features of the vortices. In each plane, the values of the pres-

sure and the vorticity magnitude are checked against threshold values of these quantities.

(Threshold values can be chosen a priori, or they can be a predetermined fraction of the extrema.)

A seed point is a grid point that satisfies the two threshold values.

We next refine the position of the seed point so that it is not constrained to lie on the grid. The

seed point moves in the plane perpendicular to the vorticity vector until it reaches the location of

the local pressure minimum. From this seed point we develop the vortex skeleton in two parts:

forward and backward.

3.2 Growing the Skeleton

Once a seed point has been selected, the skeleton of the vortex core can be grown from the seed.

This is where we apply the two-stage predictor-corrector method. With this technique, the next

position of the vortex skeleton is predicted by integrating along the vorticity vector. This candi-

date location is corrected by adjusting its position to lie at the pressure minimum in the plane that

is perpendicular to the (original) vorticity vector. The rationale is that rotation about the vortic-
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Figure 2. Schematic of predictor-corrector algorithm.

foreach remaining seed point Po

if Po is not in any previous vortex

while the vortex skeleton continues

(1) determine to i at Pi

(2) integrate a_i to find Pi+1

(3) determine vorticity toi+1 at Pi+I

(4) Pi+I is the point of minimum

pressure in the plane P± tO/+ 1

(5) i_--i+l

Predictor-corrector pseudocode.

ity vector is supported by low pressure at its center: the vortex tube's cross-section has its

lowest pressure at the center of the tube. Where vortices merge this rule may be violated,

causing the corrector step to lead the skeleton away from the vortex tube. To ensure that the

minimum is actually part of the vortex under consideration, we limit the allowable angle

between the vorticity vectors at the predicted and the corrected point.

Integral curves of vorticity or of the pressure gradient are both unreliable at capturing vortex

skeletons. Remarkably, the combination of the two provides a robust method of following the

vortex core. The continuous modification of the skeleton point lessens the sensitivity to both

the initial conditions and the integration details.

The predictor-corrector algorithm is illustrated in the schematic diagrams of Figure 2. The

details for continuing the calculation from one point to the next are indicated by the numbered

items in the pseudocode. Steps 1-2 repre-

sent the predictor stage of the algorithm.

The corrector stage is summarized by steps

3-4.

The effectiveness of the predictor-corrector

scheme is illustrated in Figure 3, in which

data from the direct numerical simulations

of Singer and Joslin [13] are analyzed. The

transparent vortex tube (a portion of a hair-

pin vortex) is constructed with data from Figure 3. Vorticity line (light)compared to predic-
tor-corrector line (dark). Note that the vorticity line

the full predictor-corrector method. Its core exits from the vortex tube while the predictor-cor-

is indicated by the darker skeleton. The rector skeleton line follows the core.
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Figure 4. Multiple realizations of the same vortex
tube from different seed points. Each seed point gen-
erates a slightly different skeleton line, although all
the skeletons remain close to the vortex core.

Figure 5. Feeders merge with a large-scale hairpin
vortex. Three points that satisfy the threshold crite-
ria lie on the edge of vortex tube. Their trajectories
curve inward toward the core and then follow the
main skeleton line.

lighter skeleton follows the uncorrected integral curve of the vorticity. It is obtained by dis-

abling the corrector phase of the scheme. The vorticity line deviates from the core, exits the

vortex tube entirely, and wanders within the flow field.

3.3 Terminating the Vortex Skeleton

Vorticity lines extend until they intersect a domain boundary, but real vortices typically begin

and end inside the domain. Therefore, the algorithm must always be prepared to terminate a

given vortex skeleton. A simple and successful condition for termination occurs when the vor-

tex cross-section (discussed in section 4) has zero area. As Figures 3 and 7 show, the recon-

structed vortex tubes taper down to their endpoints, where the cross-section vanishes.

3.4 Implementation Details

Although the general behavior of the predictor-corrector algorithm is reliable and robust, opti-

mal performance of the technique requires careful attention to implementation details. This

section addresses issues that are important to the successful use of this method. It is by no

means exhaustive; additional details are provided by Singer and Banks [15].

Eliminating Redundant Seeds and Skeletons

Sampling every grid point produces an overabundance of seed points, and hence a multitude

of nearly-coincident vortex skeletons (Figure 4). Each of these skeletons lies at the core of the



very samevortex tube; one representative skeleton suffices. The redundancies are elimi-

nated when points inside a tube are excluded from the pool of future seed points.

Eliminating Spurious Feeders

A seed near the surface of the vortex tube can produce a "feeder" vortex skeleton that spirals

toward the vortex center. Examples of these feeders are illustrated in Figure 5. We eliminate

feeders by taking advantage of the asymmetry of the predictor-corrector method. A feeder

skeleton, begun on the surface of the tube, grows toward the core; a skeleton growing along

the core does not exit through the tube. To validate a candidate seed P0, we integrate for-

ward tz steps to the point Pn and then backward again by n steps to determine a "true" seed

point within the vortex.

Numerical Considerations for Interpolation

Neither the predictor nor the corrector step is likely to land precisely on a grid point; hence,

we must interpolate the pressure and vorticity at arbitrary locations in the flow field. To

reduce any bias from the interpolation, a four-point Lagrange interpolation is used in each of

the three coordinate directions. The interpolation scheme works quite well, although it is the

most expensive step in our implementation.

Corrector Step

The pressure-minimum correction scheme uses the method of steepest descent to find the

local pressure minimum in the plane perpendicular to the vorticity vector. The smallest grid-

cell dimension is used as a local length scale to march along the gradient direction. The cor-

rector stage can be iterated in order to converge to the skeleton, but that convergence is not

guaranteed. We therefore limit the angle that the vorticity can change during the corrector

phase.

4 Finding the Cross-section

Since it is unclear how to precisely define what points lie in a vortex, it is also unclear how

to determine the exact shape of a vortex tube's cross-section. Determining an appropriate

measure of the vortex cross-section has been one of the more difficult practical aspects of

this work.

A point on the vortex skeleton serves as a convenient center for a polar coordinate system in

the plane perpendicular to the skeleton line. We have chosen therefore to characterize the

cross-section by a radius function. Note that this scheme correctly captures only star-shaped



cross-sections.Cross-sectionswith more elaborateshapesare therebytruncatedto star

shapes(with discontinuitiesin theradiusfunction).In practicethis choicedoesnot seemto
beveryrestrictive,assection4.2 indicates.

In examiningthe cross-sectionplanethereare two importantquestionsto address.First,

what determineswhethera point in the plane belongsto the vortex tube?Second,how

shouldthe shapeof the tube'scross-sectionbe represented?This sectionsummarizesthe
strategiesthat we foundto besuccessful.

4.1 Criteria for Determining Membership

For isolated vortices, a threshold of pressure provides an effective criterion to determine

whether a point belongs to a vortex. When two or more vortices interact, their low-pressure

regions merge and distort the radius estimate of any single vortex. This difficulty is resolved

if the angle between the vorticity vector on the skeleton line and the vorticity vector at any

radial position is restricted. Any angle greater than 90 degrees indicates that the fluid at the

radial position is rotating in the direction opposite to that in the core. We have found that the

90-degree restriction works well in combination with a low-pressure criterion for the vortex

edge.

For the actual computation of the radial distance, the pressure and the vorticity are sampled

along radial lines, emanating from the skeleton, lying in the perpendicular plane. We step

along each radial line until a point is reached that violates the vorticity or the pressure-

threshold criterion.

4.2 Representation of the Cross-section

If the radius of the cross-section were sampled at 1-degree increments, then 360 radial dis-

tances (and a reference vector to define the 0-degree direction) must be associated with each

skeleton point. That is a great deal of data to save for each point of a time-varying set of vor-

tex skeletons. We have found that average radius is sufficient to describe the cross-section of

an isolated vortex tube.

When vortices begin to interact, the cross-section is non-circular and so the average radius

does not provide a good description of it. However, a truncated Fourier series of the radial

locations provides a convenient compromise between the average radius and a full set of all

radial locations. The series is easy to compute, easy to interpret, and allows a large range of

cross-sectional shapes. In our work, we keep the constant term, the first and second sine and

cosine coefficients, and a reference vector. Most of the cases that we have checked have a



Figure 6. Cross-section of a vortex tube. The finely-
sampled radius function is shaded grey. The thin
line is an approximating circle. The thick line is a
truncated Fourier representation.

Figure 7. Interacting vortices _from a numerical

simulation) within a complex flow are identified with

the predictor-corrector algorithm. The direction of

flow is to the right.

factor-of-10 drop in the magnitude of the first and second coefficients, indicating that the

neglected terms are not significant. That observation also validates our assumption that the

cross-section is well-represented by a continuous polar function.

Figure 6 illustrates a single cross section of a vortex educed from direct numerical simulation

data. The shaded region is the interior of the vortex tube, sampled at 1-degree intervals. The

thin line is a circle, centered at the skeleton, using the averaged radius of the vortex tube. The

thick line is the truncated Fourier series representation of the vortex cross-section, providing a

better approximation than the circle.

5 Data Compression and Reconstruction

Our particular interest is to visualize the transition to turbulence in a shear flow. We have per-

formed a lengthy simulation using Cray computers over the course of two calendar years. The

numerical grid grows with the size of the evolving flow structures, but a grid size of

461×161×275 in streamwise, wall-normal, and spanwise directions is representative. Each

grid point holds several numerical quantities, including pressure and vorticity. Thus the stor-

age exceeds 650 MB (megabytes) of data per time step.

By using vortex skeletons we are able to compress the data significantly and then reconstruct

the vortex tubes locally on a workstation.
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5.1 Compression

An animation of the vortices, based on the original computational volumetric data, would con-

sume over 650 GB of data for 1000 time steps. At present this is a prohibitive requirement of

an interactive 3D animation on a workstation. Storing all the individual polygons offers some

compression, but not enough to bring an animation within reach.

In general, a vortex skeleton is adequately represented by 30 to 200 samples. The complex

scene in Figure 7 is represented by about 2000 skeleton points, each endowed with 72 bytes of

data (representing position, tangent, normal, binotmal, cross-section, and velocity magni-

tude). Thus a reduction from 648 MB to 144 KB is achieved, representing more than a 4000-

fold factor of compression. This amount of compression offers the promise of workstation-

based interactive animations, even for a 1000-frame simulation.

5.2 Reconstruction

The significant data-compression that vortex skeletons provide does not come without cost.

There is still the matter of reconstructing polygonal tubes from the skeletons. If the tubes have

circular cross-sections, they are generalized cylinders. Bloomenthal gives a clear exposition

of how to reconstruct a generalized cylinder from a curve through its center [14]. The coordi-

nate system of the cross-section rotates from one skeleton point to the next. The key issue is

how to keep the rate of rotation (about the skeleton's tangent vector) small. Excessive twist is

visible in the polygons that comprise the tube: they become long and thin and their interiors

approach the center of the tube.

In our implementation, we project the coordinate bases from one cross-section onto the the

next cross-section. This produces a new coordinate system that has not twisted very much.

This normal vector might be different from the reference vector (which indicates the 0-degree

direction) for the Fourier representation of the cross-section. To reconstruct the cross-section,

we phase-shift the angle in the Fourier series by the angular difference between the normal

and the reference vector. In general, 30 to 80 samples suffice to reconstruct a cross-section of

good quality.

Sometimes there is good reason for a "reconstruction" that is not faithful to the original shape

of the vortex tube. A static image does not convey the spiraling motion along the surface of

the vortex tube. We experimented with different methods of visualizing the velocities on the

tube itself. One helpful technique is to create a texture on the surface, drawing curves to indi-

cate the helical flow. This visualization is enhanced dramatically when the curves are dis-
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Figure 8. Enhanced reconstruction of a hairpin
vortex tube, The grooves follow integral curves of
velocity, constrained to follow the surface of the
tube. Green indicates large angular velocity; red
indicates small angular velocity.

placed inward to produce grooves. Figure

9 demonstrates this technique on a single

hairpin vortex. The grooves follow integral

curves of the surface-constrained velocity

vectors. In an informal survey of about a

dozen colleagues, we found that none

could estimate the amount of helical

motion in a faithful reconstruction (as in

Figures 4 and 8) of a vortex tube. On the

other hand, the same subjects instantly

identified the direction and amount of rota-

tion in the enhanced image of Figure 8.

There are two important issues in recon-

struction that we have not yet addressed in

our implementation; both relate to the rep-

resentation and compression of the vortices as well. First, we would like to minimize the num-

ber of samples carried by a vortex skeleton. Where the vortex skeleton has high curvature or

where the cross-section changes shape quickly, many samples are required to permit an accu-

rate reconstruction. But most vortex tubes have long, straight portions with nearly-circular

cross-sections of nearly-constant radius. This characteristic should permit us to represent the

vortex tube with many fewer samples along its skeleton.

The second issue concerns interpolation. In reviewing the development of a vortical flow, a

scientist may be especially interested in narrowing the interval of animation to only a few of

the original time steps. It would be helpful to generate in-between frames from the given data.

We could interpolate the original volumetric grids to extract interpolated vortex skeletons, but

that would require a great deal of data communication. Interpolating between the skeletal rep-

resentations, on the other hand, could be done in memory. Unfortunately, it is difficult to inter-

polate between irregular branching structures like the time-varying vortex skeletons. These

two issues remain as future work.

Conclusions

The innovative use of a two-step predictor-corrector algorithm has been introduced to identify

vortices in flow-field data. Unlike other approaches, our method is able to self-correct toward

12



the vortex core. The principle of using a vector field to predict the location of the next point

and a scalar field to correct this position distinguishes this method from others.

This paper discusses a number of novel approaches that we have developed to deal with mat-

ters such as eliminating redundant vortices, eliminating feeders, and representing the cross-

section of a vortex tube. Sample extractions of vortices from various flow fields illustrate the

different aspects of the technique.

The vortex skeletons are an economical way to represent flow data, offering a 4000-fold com-

pression factor even in a complex flow. This offers the possibility of storing a multi-frame

flow animation in a workstation's memory. The vortex tubes can be enhanced during recon-

struction in order to help visualize the dynamics of vortical flow.
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